1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
//! AST builder DSL

use super::*;

pub use super::BinOp;

/* TODO
macro_rules! ast {
    ({$stmt:tt}) => {
        todo!()
    };
    ({$stmt:tt, $($stmts),+}) => {
        ast!
    }
}
*/

// ==============================================
// [`Program`] and statements.

/// Creates a [`Program`] from a list of [`Statement`]s.
///
/// ```
/// use sljs::ast::build::*;
///
/// let program = script(|ctx| Ok(vec![
///     // Statement list
/// ])).expect("Program");
/// ```
pub fn script<F>(action: F) -> ParseResult<Program>
where
    F: FnMut(&mut LexicalContext) -> ParseResult<Vec<Statement>>,
{
    LexicalContext::new_program(|ctx| ctx.enter_block(action))
}

/// Creates a [`BlockStatement`] from a closure that builds a vector of [`Statement`]s.
///
/// ```
/// use sljs::ast::{Program, build::*};
///
/// let b = Program::try_from(block(|ctx| Ok(vec![
///     // Statements
/// ]))).expect("Program");
/// ```
pub fn block<F>(closure: F) -> BlockBuilder<F>
where
    F: FnOnce(&mut LexicalContext) -> ParseResult<Vec<Statement>>,
{
    BlockBuilder { closure }
}

/// make a [`ReturnStatement`](`expr`)
pub fn return_(expr: Expression) -> Statement {
    Statement::from(ReturnStatement(Some(expr)))
}

// ==============================================
// Expressions

/// make a [`Literal`] (`JSON::Null`) (JS: `null`).
pub fn null() -> Expression {
    Expression::from(Literal::NULL)
}

/// make a [`Literal`] from `value`
///
///  - `lit(2)` is `2` in JavaScript
///  - `lit(true)` is `true` in JavaScript
///  - ...
///
/// DO NOT USE this for arrays and objects, use [`array()`] and [`object()`] instead!
pub fn lit<V>(value: V) -> Expression
where
    Literal: From<V>,
{
    Expression::from(Literal::from(value))
}

/// make an [`ArrayExpression`] (`vec![v1, v2, ...]`) (JS: `[v1, v2, ...]`)
pub fn array<E>(exprs: Vec<E>) -> Expression
where
    Expression: From<E>,
{
    let exprs = exprs.into_iter().map(Expression::from).collect();
    let expr = Expr::Array(ArrayExpression(exprs));
    Expression { expr, loc: None }
}

/// make an empty [`ArrayExpression`], JS: `[]`
pub fn empty_array() -> Expression {
    array::<Expression>(vec![])
}

/// make a [`ObjectExpression`] (`vec![(k1, v1), ...]`) (JS: `{k1: v1, ...}`)
pub fn object<K>(pairs: Vec<(K, Expression)>) -> Expression
where
    ObjectKey: From<K>,
{
    let pairs = (pairs.into_iter())
        .map(|(k, v)| (ObjectKey::from(k), v))
        .collect();
    Expression::from(ObjectExpression(pairs))
}

/// make an empty [`ObjectExpression`] (JS: `{}`)
pub fn empty_object() -> Expression {
    object::<Identifier>(vec![])
}

/// make a [`UnaryExpression`]([`UnOp::Plus`], `expr`)
pub fn plus<E>(expr: E) -> Expression
where
    Expression: From<E>,
{
    let expr = Expression::from(expr);
    let expr = Expr::Unary(Box::new(UnaryExpression(UnOp::Plus, expr)));
    Expression { expr, loc: None }
}

/// make a [`BinaryExpression`](`left`, `op`, `right`)
pub fn binary<E1, E2>(op: BinOp, left: E1, right: E2) -> Expression
where
    Expression: From<E1> + From<E2>,
{
    let left = Expression::from(left);
    let right = Expression::from(right);
    Expression::from(BinaryExpression(left, op, right))
}

/// make a [`BinaryExpression`] (`left`, [`BinOp::Plus`], `right`)
pub fn add<E1, E2>(left: E1, right: E2) -> Expression
where
    Expression: From<E1> + From<E2>,
{
    binary(BinOp::Plus, Expression::from(left), Expression::from(right))
}

/// make a [`BinaryExpression`] (`left`, [`BinOp::Minus`], `right`)
pub fn sub<E1, E2>(left: E1, right: E2) -> Expression
where
    Expression: From<E1> + From<E2>,
{
    binary::<E1, E2>(BinOp::Minus, left, right)
}

/// make a [`BinaryExpression`] (`left`, [`BinOp::Star`], `right`)
pub fn mul<E1, E2>(left: E1, right: E2) -> Expression
where
    Expression: From<E1> + From<E2>,
{
    binary::<E1, E2>(BinOp::Star, left, right)
}

/// make a [`BinaryExpression`] (`left`, [`BinOp::EqEq`], `right`)
pub fn eqeq<E1, E2>(left: E1, right: E2) -> Expression
where
    Expression: From<E1> + From<E2>,
{
    binary(BinOp::EqEq, left, right)
}

/// make a non-computed (i.e. `object.attr`) [`MemberExpression`](`object`, `attr`)
pub fn memb<E, I>(object: E, attr: I) -> Expression
where
    Expression: From<E>,
    Identifier: From<I>,
{
    let object = Expression::from(object);
    let attr = Identifier::from(attr);
    let attr = Expression {
        expr: Expr::Identifier(attr),
        loc: None,
    };
    MemberExpression(object, attr, false).into()
}

/// make a computed  [`MemberExpression`](`object`, `attr`) (JS: `object[attr]`)
pub fn index<E>(object: E, attr: Expression) -> Expression
where
    Expression: From<E>,
{
    let object = Expression::from(object);
    MemberExpression(object, attr, true).into()
}

/// make a [`CallExpression`] with `callee` and `arguments` (JS: `callee(arguments...)`)
pub fn call<E>(callee: E, arguments: Vec<Expression>) -> Expression
where
    Expression: From<E>,
{
    let callee = Expression::from(callee);
    CallExpression(callee, arguments).into()
}

// ==============================================
// AST DSL helpers

/// An AST DSL helper to enable `Program::try_from(with(|ctx| Ok(...)))` via [`with`]
pub struct Builder<T, F: FnOnce(&mut LexicalContext) -> ParseResult<T>> {
    closure: F,
}

impl<T, F> TryFrom<Builder<T, F>> for Program
where
    Statement: From<T>,
    F: FnOnce(&mut LexicalContext) -> ParseResult<T>,
{
    type Error = ParseError;

    fn try_from(builder: Builder<T, F>) -> Result<Self, ParseError> {
        LexicalContext::new_program(|ctx| {
            ctx.block(|ctx| {
                let expr = (builder.closure)(ctx)?;
                Ok(vec![Statement::from(expr)])
            })
        })
    }
}

/// An AST DSL helper to enable `Program::try_from(block(|ctx| Ok(...)))` via [`block`]
pub type BlockBuilder<F> = Builder<Vec<Statement>, F>;

impl<F> TryFrom<BlockBuilder<F>> for Program
where
    F: FnOnce(&mut LexicalContext) -> ParseResult<Vec<Statement>>,
{
    type Error = ParseError;

    fn try_from(builder: BlockBuilder<F>) -> Result<Self, ParseError> {
        LexicalContext::new_program(|ctx| ctx.block(|ctx| (builder.closure)(ctx)))
    }
}

/// A helper to surround an closure in `assert_parse!` macro calls.
pub fn with<T, F>(closure: F) -> Builder<T, F>
where
    F: FnOnce(&mut LexicalContext) -> ParseResult<T>,
{
    Builder { closure }
}

/// make an [`Identifier`] from `name` (JS: `name`)
pub fn id(name: &str) -> Expression {
    Expression::from(Identifier::from(name))
}